ЗАО Институт хроматографии "ЭкоНова"

630090, Новосибирск, ул. Николаева, 8 тел.: 8(383) 330-95-57, факс: 8(383) 330-83-21 эл.почта: info@econova.nsk.su http://www.econova.ru

ХРОМАТОГРАФЫ СЕРИИ "МИЛИХРОМ"Примеры применения

Новосибирск, Иркутск - 1996

ПРИМЕРЫ ПРИМЕНЕНИЯ

АЛЬДЕГИДЫ В ЭТАНОЛЕ

АМИНОКИСЛОТЫ В СЛЮНЕ ЧЕЛОВЕКА

АМИНОКИСЛОТЫ: ФЕНИЛТИОГИДАНТОИНЫ (ФТГ-АМИНОКИСЛОТЫ)

АМИНОКИСЛОТЫ: ФЕНИЛТИОКАРБАМАИЛЬНЫЕ ПРОИЗВОДНЫЕ (ФТК-АМИНОКИСЛОТЫ)

ВЗРЫВЧАТЫЕ НИТРОСОЕДИНЕНИЯ ВИТАМИН *E* В ПОДСОЛНЕЧНОМ МАСЛЕ

ЖИРНЫЕ КИСЛОТЫ

ЖИРНЫЕ КИСЛОТЫ: ТРИГЛИЦЕРИДЫ И МЕТИЛОВЫЕ ЭФИРЫ

ИСПОЛЬЗОВАНИЕ ПРЕДОБРАЗЦА ДЛЯ УЛУЧШЕНИЯ РАЗРЕШЕНИЕ ПИКОВ

КАЧЕСТВО КОРОТКИХ МИКРОКОЛОНОК

КРИМИНАЛИСТИКА: КЛОФЕЛИН В НАПИТКАХ

КРИМИНАЛИСТИКА: МОРФИН В МАКОВОЙ СОЛОМКЕ

КРИМИНАЛИСТИКА: ПАСТЫ ИЗ ШАРИКОВЫХ АВТОРУЧЕК

КСАНТИНЫ

КСАНТИНЫ И КОФЕИН

МНОГОВОЛНОВОЕ ФОТОМЕТРИЧЕСКОЕ ДЕТЕКТИРОВАНИЕ

МОЧЕВАЯ КИСЛОТА В СЫВОРОТКЕ КРОВИ ЧЕЛОВЕКА

НЕОРГАНИЧЕСКИЕ АНИОНЫ (НЕПРЯМОЕ УФ-ДЕТЕКТИРОВАНИЕ)

ПЕРХЛОРИРОВАННЫЕ ДИБЕНЗОДИОКСИН, ДИБЕНЗОФУРАН И БИФЕНИЛ

ПЕСТИЦИДЫ ХЛОРАРОМАТИЧЕСКИЕ

ПЕСТИЦИДЫ: ДДТ ЕГО МЕТАБОЛИТЫ В ЖИРЕ БАЙКАЛЬСКОЙ НЕРПЫ

ПЕСТИЦИДЫ: ИЗОМЕРЫ ПЕРМЕТРИНА ПЕСТИЦИДЫ: КАРБАМАТЫ И МОЧЕВИНЫ ПЕСТИЦИДЫ: ТРИАЗИНЫ И ПОДОБНЫЕ

ПЕСТИЦИДЫ: ХЛОРИРОВАННЫЕ АРОМАТИЧЕСКИЕ КИСЛОТЫ И ИХ ЭФИРЫ

ПОГЛОЩАЮЩИЕ УФ-ИЗЛУЧЕНИЕ ВЕЩЕСТВА В ОЧИЩЕННОЙ ВОДЕ

ПОЛИЦИКЛИЧЕСКИЕ АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ

ПОЛИЦИКЛИЧЕСКИЕ АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ В СНЕГЕ

ПОЛИЦИКЛИЧЕСКИЕ АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ В СНЕГЕ И В АТМОСФЕРЕ

ПОЛИЦИКЛИЧЕСКИХ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ В ПИТЬЕВОЙ ПИТЬЕВОЙ ВОДЕ

CAXAPA

САХАРА В ГИДРОЛИЗАТЕ ДРЕВЕСИНЫ

ФЕНОЛЫ

ФЕНОЛЫ - ПРОДУКТЫ ДЕСТРУКЦИИ ЛИГНИНА ФЕНОЛЫ: ВЕРАТРОЛЫ - МОНОМЕРЫ ЛИГНИНА

ФТАЛАТЫ: БИС(2-ЭТИЛГЕКСИЛ)ФТАЛАТ В ВОДЕ ОЗЕРА БАЙКАЛ

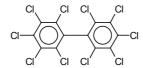
ФТАЛАТЫ: ДИОКТИЛФТАЛАТ В ПОЛИВИНИЛХЛОРИДЕ

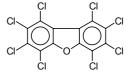
ФТАЛАТЫ: ДИЭФИРЫ ФТАЛЕВОЙ КИСЛОТЫ

ФТАЛАТЫ: СУММА ЭФИРОВ ФТАЛЕВОЙ КИСЛОТЫ В ЖИРЕ БАЙКАЛЬСКОГО ТЮЛЕНЯ

ХЛОРИРОВАННЫЕ ФЕНОЛЫ

ХЛОРОФИЛЛ a

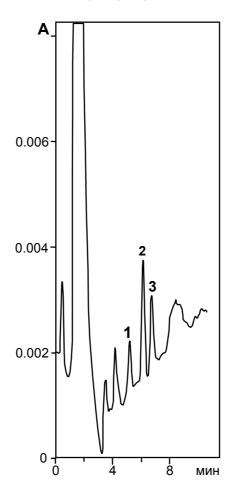

ХЛОРФЕНОЛЫ В ЖЕЛЧИ РЫБЫ - КРИТЕРИЙ ЗАГРЯЗНЕНИЯ ВОДОЕМА


ХЛОРФЕНОЛЫ В СТОЧНЫХ ВОДАХ ПРОИЗВОДСТВА БЕЛЕНОЙ ЦЕЛЛЮЛОЗЫ

ХЛОРФЕНОЛЫ: АККУМУЛИРОВАНИЕ ТЕТРАХЛОРГВАЯКОЛА В ЖЕЛЧИ РЫБ

ХРОМАТОГРАФИЯ И СПЕКТРОСКОПИЯ

ПЕРХЛОРИРОВАННЫЕ ДИБЕНЗОДИОКСИН, ДИБЕНЗОФУРАН И БИФЕНИЛ



1. Перхлордибензодиоксин

2. Перхлорбифенил

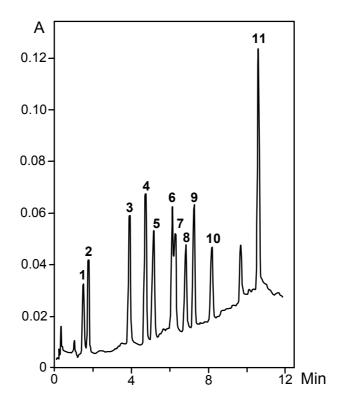
3. Перхлордибензофуран

КОЛОНКА: Ø2x64 мм; Eurosphere 80-5 C18

ЭЛЮЕНТ: CH₃CN

СКОРОСТЬ ПОТОКА: 0.1 мл/мин **ДАВЛЕНИЕ**: 1 МПа **ТЕМПЕРАТУРА**: 45^OC

ДЕТЕКТОР: 230 нм


ОБРАЗЕЦ: 2 мкл метанольного раствора (по 4 нг каждого соединения)

ПЕСТИЦИДЫ: КАРБАМАТЫ И МОЧЕВИНЫ

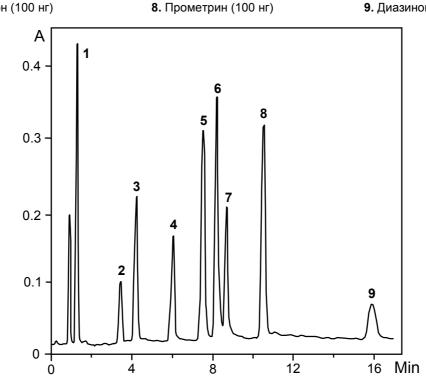
9. Хлорпрофам (20 нг)

10. Метолахлор (200 нг)

11. Триаллат (200 нг)

колонка: Ø2x64 мм; Eurosphere 80-5 С18

A- [CH₃OH]:[H₂O]:[1.0 M CH₃COONa, pH 5.0]=35:64:1 элюенты: B- [CH₃OH]:[H₂O]:[1.0 M CH₃COONa, pH 5.0]=85:14:1


0-100% В за 10 мин; 100% В 3 мин ГРАДИЕНТ:

СКОРОСТЬ ПОТОКА: 0.2 мл/мин **ТЕМПЕРАТУРА**: 45^OC **ДАВЛЕНИЕ**: 4 МПа

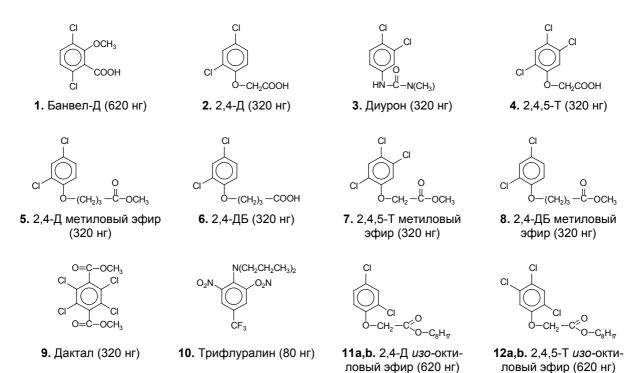
240 нм ДЕТЕКТОР:

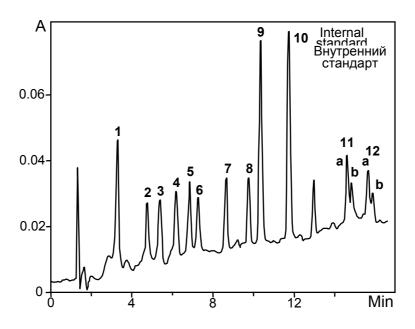
2 мкл раствора в [CH $_3$ OH]:[H $_2$ O]:[1.0 M CH $_3$ COONa, pH 5.5]=50:40:10 ОБРАЗЕЦ:

ПЕСТИЦИДЫ: ТРИАЗИНЫ И ПОДОБНЫЕ

колонка: Ø2x64 мм; Eurosphere 80-5 С18

A- [CH₃CN]:[H₂O]:[1.0 M CH₃COONa, pH 5.75]=30:69:1 В- [CH₃CN]:[H₂O]:[1.0 M CH₃COONa, pH 5.75]=50:49:1 0-100% В за 10 мин; 100% В 8 мин ЭЛЮЕНТЫ:


ГРАДИЕНТ:


ТЕМПЕРАТУРА: 45^OC СКОРОСТЬ ПОТОКА: 0.2 мл/мин давление: 3 МПа

ДЕТЕКТОР: 220 нм

2 мкл раствора в [CH₃OH]:[1.0 M CH₃COONa, pH 5.75]=99:1 ОБРАЗЕЦ:

ПЕСТИЦИДЫ: ХЛОРИРОВАННЫЕ АРОМАТИЧЕСКИЕ КИСЛОТЫ И ИХ ЭФИРЫ

КОЛОНКА: Ø2x64 мм; Eurosphere 80-5 C18

ЭЛЮЕНТЫ: A- [CH₃OH]:[H₂O]:[CH₃COOH]=100:100:1; B- [CH₃OH]:[H₂O]:[CH₃COOH]=180:20:1

ГРАДИЕНТ: 0-20% В за 1 мин; 20-100% В за 12 мин; 100% В 3 мин

СКОРОСТЬ ПОТОКА: 0.15 мл/мин **ДАВЛЕНИЕ**: 3 МПа **ТЕМПЕРАТУРА**: 45^OC

ДЕТЕКТОР: 220 нм

ОБРАЗЕЦ: 2 мкл раствора в [CH₃OH]:[CH₃COOH]=98:2

ВЗРЫВЧАТЫЕ НИТРОСОЕДИНЕНИЯ

$$O_2N-N \bigvee_{\substack{N\\N\\NO_2}}^{NO_2} N-NO_2$$

1. Октаген (150 нг)

$$\bigcap_{N = 1}^{NO_2} \bigcap_{N = 1}^{NO_2} \bigcap_{N$$

2. Гексаген (150 нг)

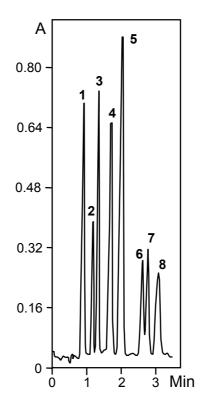
3. Тринитробензол (75 нг)

$$H_3C$$
 NO_2 NO_2 NO_2 NO_2

4. Тетрил (150 нг)

$$O_2N$$
 NO_2
 NO_2

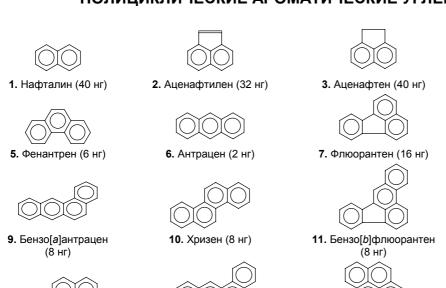
5. Тринитротолуол (75 нг)

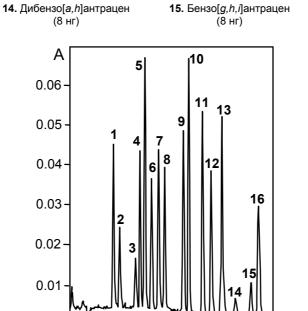

6. 2,4-динитротолуол (150 нг)

7. 2,6-динитротолуол (150 нг)

8. Пикриновая кислота (150 нг)

КОЛОНКА: Ø2x64 мм; Eurosphere 80-5 C18


ЭЛЮЕНТ: $\{CH_3OH\}:[H_2O]:[0.1 \text{ M } (n-C_4H_9-)_4NH_2PO_4, \text{ pH } 6.8]=50:40:10$


СКОРОСТЬ ПОТОКА: 0.28 мл/мин ДАВЛЕНИЕ: 5 МПа ТЕМПЕРАТУРА: 45°C

ДЕТЕКТОР: 230 нм

ОБРАЗЕЦ: 3 мкл раствора в [CH₃CN]:[H₂O]:[0.1 M (n-C₄H₉-)₄NH₂PO₄, pH 6.8]=50:40:10

ПОЛИЦИКЛИЧЕСКИЕ АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ

КОЛОНКА: Ø2x80 mm; Nucleosil 5-C18 PAH **ЭЛЮЕНТЫ:** A- [CH₃OH]:[H₂O]=80:20; B- CH₃CN **ГРАДИЕНТ:** 0-100% В за 9 мин; 100% В 8 мин

0

СКОРОСТЬ ПОТОКА: 0.12 мл/мин **ДАВЛЕНИЕ**: 2 МПа **ТЕМПЕРАТУРА**: 22^OC

8

12

16 Min

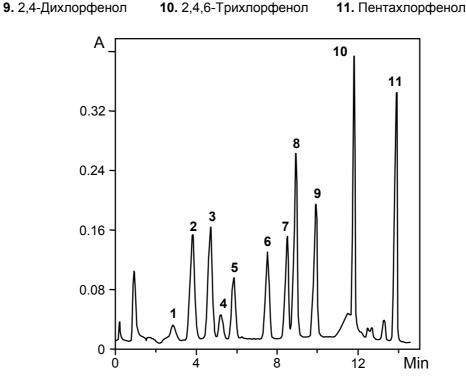
ДЕТЕКТОР: 254 нм

13. Бензо[*a*]пирен

(10 нг)

ОБРАЗЕЦ: 2 мкл метанольного раствора

4. Флюорен (10 нг)


8. Пирен (10 нг)

12. Бензо[*k*]флюорантен (10 нг)

16. Индено[1,2,3-*cd*]пирен

(8 нг)

ФЕНОЛЫ

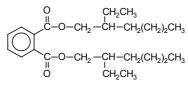
КОЛОНКА: Ø2x64 мм; Eurosphere 80-5 C18

ЭЛЮЕНТЫ: A- [CH₃OH]:[H₂O]:[CF₃COOH]=36:63.9:0.1; B- CH₃OH **ГРАДИЕНТ:** 0-68% В за 11 мин; 68-100% В за 1 мин; 100% В 5 мин

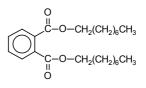
СКОРОСТЬ ПОТОКА: 0.2 мл/мин **ДАВЛЕНИЕ**: 4 МПа **ТЕМПЕРАТУРА**: 45°C

ДЕТЕКТОР: 240 нм

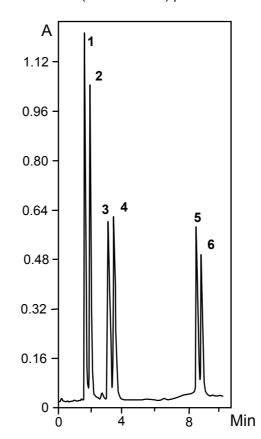
ОБРАЗЕЦ: 2 мкл раствора в [CH₃OH]:[CF₃COOH]=100:0.1 (по 225 нг каждого соединения)


ДИЭФИРЫ ФТАЛЕВОЙ КИСЛОТЫ

1. Диметилфталат


2. Диэтилфталат

3. Ди-н-бутилфталат


4. н-Бутилбензилфталат

5. *Бис*(2-этилгексил)фталат

6. Ди-н-октилфталат

КОЛОНКА: Ø2x64 мм; Eurosphere 80-5 C18 **ЭЛЮЕНТЫ:** A- [CH₃CN]:[H₂O]=80:20; B- CH₃CN

ГРАДИЕНТ: 100% Å 3 мин; 0-100% В за 1 мин; 100% В 4 мин **СКОРОСТЬ ПОТОКА:** 0.1 мл/мин **ДАВЛЕНИЕ:** 2 МПа **ТЕМПЕРАТУРА:** 50°C

ДЕТЕКТОР: 230 нм

ОБРАЗЕЦ: 2 мкл метанольного раствора (по 400 нг каждого соединения)

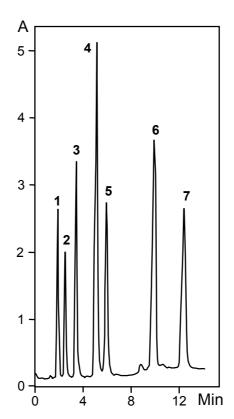
ХЛОРФЕНОЛЫ

1. Фенол

2. 4-Хлорфенол

3. 2,5-Дихлорфенол

4. 4,5,6-Трихлоргваякол



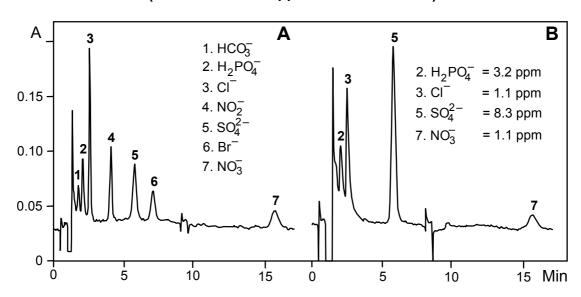
5. Тетрахлоркатехол

6. Тетрахлоргваякол

7. Пентахлорфенол

колонка: Ø2x64 мм; Silasorb 5-С18

A- [CH₃OH]:[H₂O]:[CF₃COOH]=70:30:0.1; B- [CH₃OH]:[H₂O]:[CF₃COOH]=80:20:0.1 100% А 7 мин; 100% В 8 мин ЭЛЮЕНТЫ:


ГРАДИЕНТ:

ТЕМПЕРАТУРА: 22^OC 0.1 мл/мин давление: 3 МПа СКОРОСТЬ ПОТОКА:

ДЕТЕКТОР: 210 нм

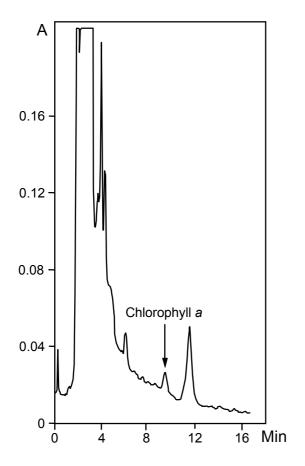
ОБРАЗЕЦ: 4 мкл метанольного раствора (по 4 мкг каждого соединения)

НЕОРГАНИЧЕСКИЕ АНИОНЫ (НЕПРЯМОЕ УФ-ДЕТЕКТИРОВАНИЕ)

КОЛОНКА: Ø2x64 мм; Nucleosil 5-C18.

Колонка динамически модифицирована тридецилбензиламмонием.

ЭЛЮЕНТ: [CN₃OH]:[H₂O]:[16 мМ бифталат калия, pH 6.0]=10:80:10


СКОРОСТЬ ПОТОКА: 0.2 мл/мин **ДАВЛЕНИЕ**: 3.5 МПа **ТЕМПЕРАТУРА**: 25^OC

ДЕТЕКТОР: 240 нм (нижняя кювета)

ОБРАЗЦЫ: А: 12 мкл водного раствора натриевых солей (10 мг/л каждого аниона).

В: 40 мкл снежной воды

ХЛОРОФИЛЛ a

Хлорофилл
$$a$$

КОЛОНКА: Ø2x64 мм; Nucleosil 5-C18

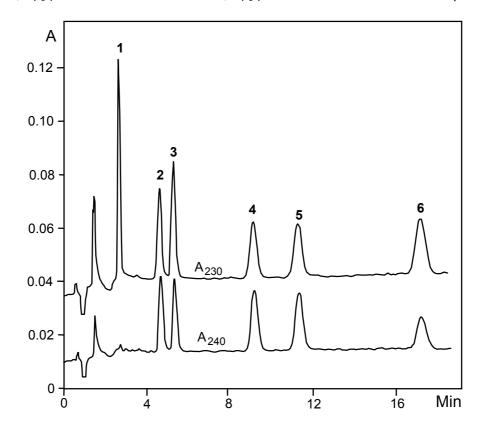
ЭЛЮЕНТ: CH₃OH

СКОРОСТЬ ПОТОКА: 0.1 мл/мин **ДАВЛЕНИЕ**: 2.5 МПа **ТЕМПЕРАТУРА**: 22^OC

ДЕТЕКТОР: 210 нм

ОБРАЗЕЦ: 10 мкл метанольного раствора высушенного экстракта. Хлорофилл экстраги-

ровали ацетоном из фитопланктона, собранного на фильтре с порами 0.45 мкм из


10 мл воды (оз. Байкал)

ХЛОРАРОМАТИЧЕСКИЕ ПЕСТИЦИДЫ

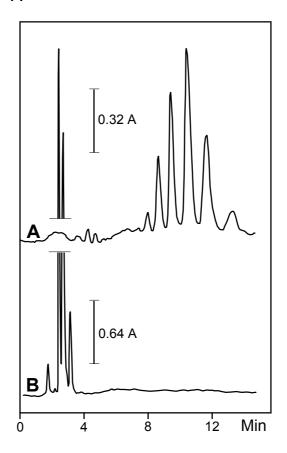
4. 4,4'-ДДТ

5. 4,4'-ДДЕ

6. Гексахлорбензол

КОЛОНКА: Ø2x64 мм; Eurosphere 80-5 C18

ЭЛЮЕНТ: [CH₃OH]:[H₂O]=80:20


СКОРОСТЬ ПОТОКА: 0.2 мл/мин **ДАВЛЕНИЕ**: 3 МПа **ТЕМПЕРАТУРА**: 45°C

ДЕТЕКТОР: 230 и 240 нм

ОБРАЗЕЦ: 5 мкл метанольного раствора (по 25 нг каждого соединения).

Предобразец: 5 мкл воды.

ТРИГЛИЦЕРИДЫ И МЕТИЛОВЫЕ ЭФИРЫ ЖИРНЫХ КИСЛОТ

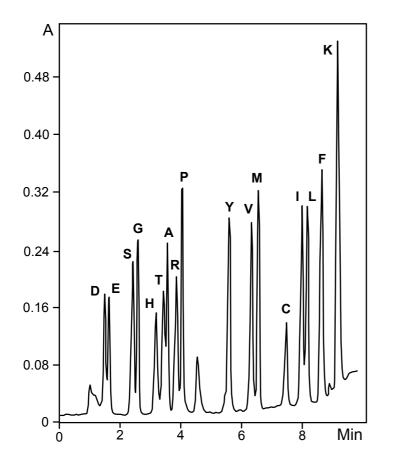
КОЛОНКА: Ø2x64 мм; Silasorb 5-C18

ЭЛЮЕНТЫ: A- CH₃OH; B- [CH₃OH]:[CH₃CHOHCH₃]=70:30

ГРАДИЕНТ: 100% A 4 мин; 100% B 12 мин

СКОРОСТЬ ПОТОКА: 0.1 мл/мин **ДАВЛЕНИЕ:** 3 МПа **ТЕМПЕРАТУРА:** 22^OC

ДЕТЕКТОР: 210 нм


ОБРАЗЦЫ: 4 мкл раствора в 2-пропаноле (5 мг/мл)

А: рапсовое масло (триглицериды).

В: метиловые эфиры жирных кислот, полученные из рапсового масла. Произво-

дятся фирмой GET (Германия) в качестве дизельного топлива BIODIESEL®

ФЕНИЛТИОКАРБАМАИЛЬНЫЕ ПРОИЗВОДНЫЕ АМИНОКИСЛОТ (ФТК-АМИНОКИСЛОТЫ)

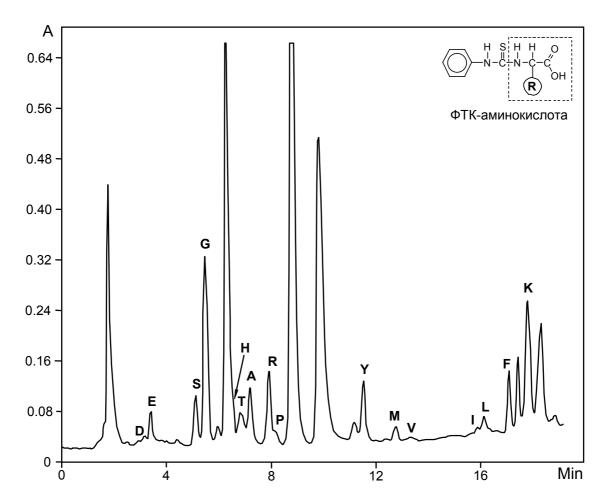
- **D-** Аспарагиновая кислота
- Е- Глутаминовая кислота
- **S-** Серин
- **G-** Глицин
- Н- Гистидин
- Т- Треонин
- **А-** Аланин
- **R-** Аргинин
- Р- Пролин
- **Y-** Тирозин
- **V-** Валин
- М- Метионин
- С- Цистеин
- **І-** Изолейцин
- **L** Лейцин
- **F-** Фенилаланин
- К- Лизин

КОЛОНКА: Ø1.7x75 мм; Nucleosil 5-С18

ЭЛЮЕНТЫ:

A- $[H_2O]$: $[0.5 \text{ M CH}_3COONH_4, \text{ pH } 6.8]$: $[1.0 \text{ M LiCIO}_4]$ =80:10:10 B- $[CH_3CN]$: $[H_2O]$: $[0.5 \text{ M CH}_3COONH_4, \text{ pH } 6.8]$: $[1.0 \text{ M LiCIO}_4]$ =50:20:10:20

ГРАДИЕНТ: 0-40% В за 6 мин; 40-100% В за 8 мин


50°C СКОРОСТЬ ПОТОКА: 0.2 мл/мин **ДАВЛЕНИЕ**: 2 МПа ТЕМПЕРАТУРА:

ДЕТЕКТОР: 250 нм

3 мкл раствора ФТК-аминокислот в Элюенте В (по 0.3 нмоля каждого соединения) ОБРАЗЕЦ:

АМИНОКИСЛОТЫ В СЛЮНЕ ЧЕЛОВЕКА

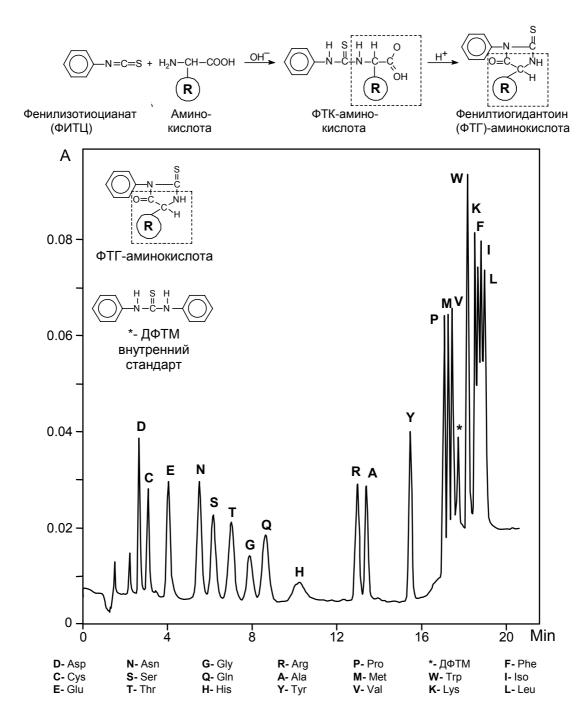
$$N=C=S+H_2N-CH-COOH$$
 — $N-C+N-C-C$ OH R ФЕНИЛИЗОТИОЦИАНАТ АМИНО- КИСЛОТА КИСЛОТА

КОЛОНКА: Ø2x64 мм; Nucleosil 5-С18

ЭЛЮЕНТЫ:

A- $[H_2O]$: $[0.5 \text{ M CH}_3COONH_4, \text{ pH } 6.5]$: $[1.0 \text{ M LiCIO}_4]$ =80:10:10 B- $[CH_3CN]$: $[H_2O]$: $[0.5 \text{ M CH}_3COONH_4, \text{ pH } 6.5]$: $[1.0 \text{ M LiCIO}_4]$ =50:20:10:20

0-40% В за 16 мин; 40-100% В за 8 мин ГРАДИЕНТ:


50°C СКОРОСТЬ ПОТОКА: 0.1 мл/мин ДАВЛЕНИЕ: 2 МПа ТЕМПЕРАТУРА:

ДЕТЕКТОР: 250 нм

ОБРАЗЕЦ: 10 мкл раствора ФТК-аминокислот из слюны человека (соответствует 5 мкл

слюны)

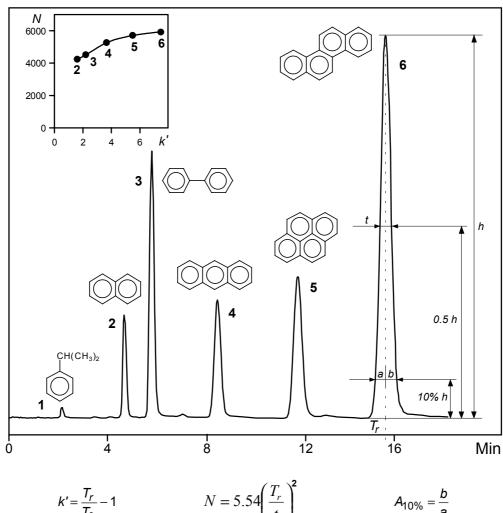
ФЕНИЛТИОГИДАНТОИНЫ АМИНОКИСЛОТ (ФТГ-АМИНОКИСЛОТЫ)

КОЛОНКА: Ø2x64 iì; Nucleosil 5-C18

ЭЛЮЕНТЫ: A- [CH₃CN]:[H₂O]:[1.0 M CH₃COONa, pH 5.5]:[2.0 M LiClO₄]=10:75:5:10

B- [CH₃CH₂OH]:[H₂O]:[1.0 M CH₃COONa, pH 5.5]:[2.0 M LiClO₄]=40:45:5:10

ГРАДИЕНТ: 0% В 6.7 мин; 0-50% В за 6.7 мин; 50-100% В за 2 мин; 100% В 5 мин


СКОРОСТЬ ПОТОКА: 0.15 мл/мин ДАВЛЕНИЕ: 2 МПа ТЕМПЕРАТУРА: 40°С

ДЕТЕКТОР: 270 нм

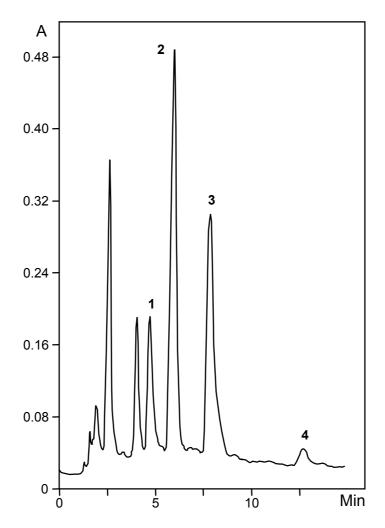
ОБРАЗЕЦ: 20 мкл раствора ФТГ-аминокислот в 0.01 М CH₃COONa (pH 5.5).

По 0.05 нмоля каждого соединения; ДФТМ (*) - 0.02 нмоля.

КАЧЕСТВО КОРОТКИХ МИКРОКОЛОНОК

$$k' = \frac{T_r}{T_0} - 1$$
 $N = 5.54 \left(\frac{T_r}{t}\right)^2$ $A_{10\%} = \frac{b}{a}$

№ пика:	1	2	3	4	5	6
<i>Т_{г,}</i> мин	0.550	1.203	1.481	2.161	3.009	3.925
k'	0.19	1.60	2.20	3.67	5.50	7.48
<i>N,</i> теор.тар.	-	4230	4510	5250	5710	5910
A _{10%}	-	1.50	1.11	1.21	1.08	1.06


КОЛОНКА: \varnothing 2x75 мм; Eurosphere 80-5 C18

ЭЛЮЕНТ: [CH₃OH]:[H₂O]=80:20 **СКОРОСТЬ ПОТОКА:** 0.1 мл/мин **ТЕМПЕРАТУРА**: 22^OC **ДАВЛЕНИЕ**: 2 МПа

ДЕТЕКТОР: 260 нм

ОБРАЗЕЦ: 2 мкл раствора в ацетонитриле (2-пропилбензол - 2 мкг; остальные - по 1 мкг)

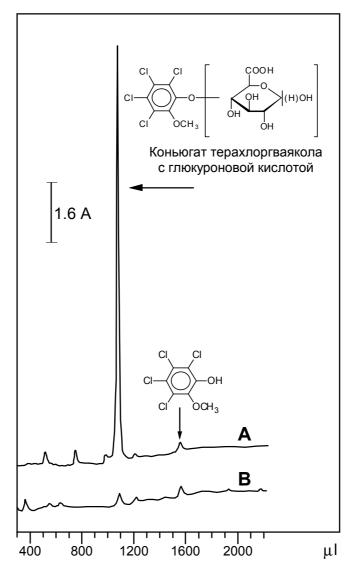
жирные кислоты

$$H_3C = CH_2 - CH = CH = \frac{1}{3}(CH_2)_7 - COOH$$

2. Линолевая кислота $H_3C(CH_2)_3$ $\left\{CH_2-CH=CH\right\}_2(CH_2)_7-COOH$

3. Олеиновая кислота $H_3C(CH_2)_7CH=CH(CH_2)_7-COOH$

4. Арахидоновая кислота $H_3C(CH_2)_4$ $-CH=CH-CH_2$ -COOH


КОЛОНКА: Ø2x64 мм; Silasorb SPH 5-C18 **ЭЛЮЕНТ**: [CH₃OH]:[H₂O]:[CH₃COOH]=90:9:1

СКОРОСТЬ ПОТОКА: 0.1 мл/мин **ДАВЛЕНИЕ**: 2 МПа **ТЕМПЕРАТУРА**: 22^OC

ДЕТЕКТОР: 200 нм

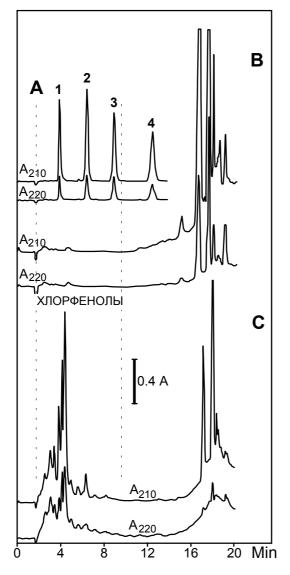
ОБРАЗЕЦ: 4 мкл метанольного раствора технической олеиновой кислоты

АККУМУЛИРОВАНИЕ ТЕТРАХЛОРГВАЯКОЛА В ЖЕЛЧИ РЫБ

- **А.** Елец (*L.leuciscus baikalensis*) инкубировался в 20-ти литровом стеклянном аквариуме 48 часов при 6^OC. Концентрация тетрахлоргваякола в воде составляла 80 мкг/л.
- В. Контрольная рыба.

КОЛОНКА: Ø2x64 мм; Nucleosil 5-C18

ЭЛЮЕНТЫ: A- [CH₃OH]:[H₂O]:[CF₃COOH]=50:50:0.1; B- [CH₃OH]:[H₂O]:[CF₃COOH]=90:10:0.1


ГРАДИЕНТ: 0-100% В за 23 мин

СКОРОСТЬ ПОТОКА: 0.1 мл/мин **ДАВЛЕНИЕ:** 3 МПа **ТЕМПЕРАТУРА:** 22^OC

ДЕТЕКТОР: 210 нм

ОБРАЗЦЫ: 2 мкл водного раствора желчи рыбы (50 мг/мл)

УРОВЕНЬ СОДЕРЖАНИЯ ХЛОРФЕНОЛОВ В ЖЕЛЧИ РЫБЫ КАК КРИТЕРИЙ ЗАГРЯЗНЕНИЯ ВОДОЕМА

Степень аккумулирования хлорфенолов в желчи рыб при концентрации хлорфенолов в воде 0.1-1 мкг/л достигает 500000. Их общее содержание определяли после щелочного гидролиза желчи рыбы, при котором происходит распад коньюгатов хлорфенолов с глюкуроновой кислотой:

КОЛОНКА: Ø2x64 мм; Nucleosil 5-C18

ЭЛЮЕНТЫ: A- [CH₃OH]:[H₂O]:[CF₃COOH]=80:20:0.1; B- [CH₃OH]:[CF₃COOH]=100:0.1

ГРАДИЕНТ: 0-100% В за 22 мин

СКОРОСТЬ ПОТОКА: 0.1 мл/мин **ДАВЛЕНИЕ**: 3 МПа **ТЕМПЕРАТУРА**: 22°C

ДЕТЕКТОР: 210 и 220 нм

ОБРАЗЦЫ: 4 мкл метанольных растворов:

 A. Наиболее гидрофобные хлорфенолы в стоках целлюлозного производства
 CI
 CI<

В: Подкисленный гидролизат желчи контрольной рыбы (плотва).

С: Подкисленный гидролизат желчи плотвы из Усть-Илимскогого водохранилища, в которое сбрасывает свои стоки Братский лесопромышленный комплекс (200 км ниже плотины Братской ГЭС).

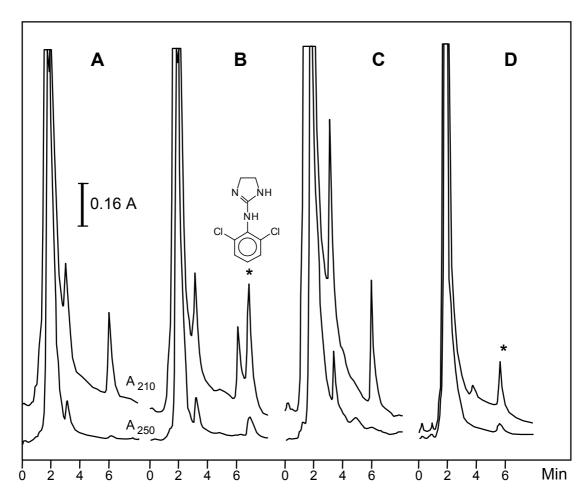
ПАСТЫ ИЗ ШАРИКОВЫХ АВТОРУЧЕК

КОЛОНКА: \emptyset 2x64 мм; Eurosphere 80-5 C18

ЭЛЮЕНТЫ: A- [CH₃OH]:[H₂O]=10:90; B- [CH₃OH]:[H₂O]=90:10

ГРАДИЕНТ: 0-100% В за 15 мин; 100% В 7 мин

СКОРОСТЬ ПОТОКА: 0.1 мл/мин **ДАВЛЕНИЕ:** 3 МПа **ТЕМПЕРАТУРА:** 22^oC


ДЕТЕКТОР: 210 нм

ОБРАЗЕЦ: 10 мкл этанольного экстракта трех образцов паст (A, B, C) шариковых авторучек.

Экстрагировали куски бумаги размером 3х3 мм, на которых были написаны каждой

аторучкой по одной букве.

КЛОФЕЛИН В НАПИТКАХ

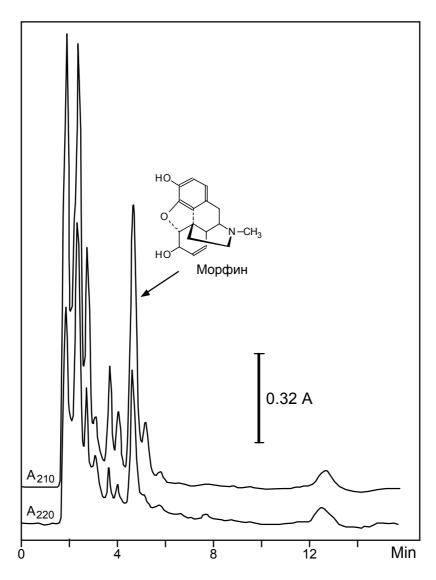
КОЛОНКА: Ø2x64 мм; Nucleosil 5-C18

ЭЛЮЕНТ: $[CH_3OH]:[H_2O]:[(CH_3CH_2-)_3N]=40:60:1$

СКОРОСТЬ ПОТОКА: 0.1 мл/мин **ДАВЛЕНИЕ**: 3 МПа **ТЕМПЕРАТУРА**: 22° C

ДЕТЕКТОР: 210 и 250 нм

ОБРАЗЦЫ: 20 мкл каждого напитка (рН доводили до 10)


А: Пиво №1;

В: Пиво №1 + клофелин (15 мг/л);

С: Пиво №2;

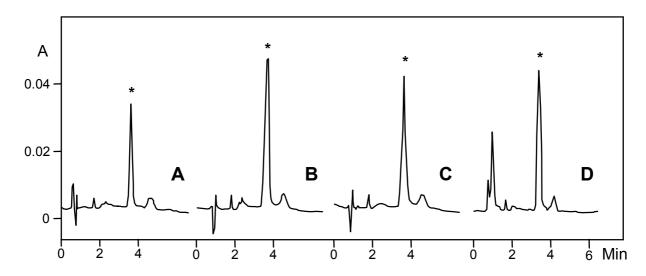
D: Лимонад + клофелин (7 мг/л).

МОРФИН В МАКОВОЙ СОЛОМКЕ

КОЛОНКА: Ø2x64 мм; Nucleosil 5-C18 **ЭЛЮЕНТ:** [CH₃OH]:[0.2 М KH₂PO₄, рН 3.0]=10:90 **СКОРОСТЬ ПОТОКА:** 0.1 мл/мин **ДАВЛЕНИ**

ДАВЛЕНИЕ: 2.5 МПа **ТЕМПЕРАТУРА**: 22⁰C

ДЕТЕКТОР: 210 и 220 нм


ОБРАЗЕЦ: 2 мкл водного экстракта маковой соломки, разбавленного 0.2 М раствором

 KH_2PO_4 (pH 3.0) в соотношении 1:1.

ВИТАМИН Е В ПОДСОЛНЕЧНОМ МАСЛЕ

$$\begin{array}{c} \text{CH}_3 \\ \text{H}_3 \text{C} \\ \text{CH}_3 \\ \text{CH}_3 \end{array} \begin{array}{c} \text{CH}_2 \\ \text{CH}_2 \\ \text{CH}_2 \end{array} \begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \text{CH}_2 \end{array} \begin{array}{c} \text{H} \\ \text{CH}_2 \\ \text{CH}_2 \end{array} \begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \text{CH}_2 \end{array} \begin{array}{c} \text{H} \\ \text{CH}_2 \\ \text{CH}_$$

Витамин Е

КОЛОНКА: Ø2x64 мм; Silasorb 600-5 (силикагель) **ЭЛЮЕНТ:** [*н*-гексан]:[хлористый метилен]=80:20

СКОРОСТЬ ПОТОКА: 0.2 мл/мин **ДАВЛЕНИЕ**: 2 МПа **ТЕМПЕРАТУРА**: 22^OC

ДЕТЕКТОР: 300 нм

ОБРАЗЦЫ: 10 мкл масла, разбавленного по объему *н*-гексаном в соотношении 5:95.

Содержание витамина E в четырех образцах подсолнечного масла составило:

A: 400 мг/л; **B:** 520 мг/л; **C:** 420 мг/л; **D:** 510 мг/л.

АЛЬДЕГИДЫ В ЭТАНОЛЕ

Предколоночная дериватизация:

КОЛОНКА: Ø2x64 мм; Nucleosil 5-C18

ЭЛЮЕНТ: [CH₃CN]:[0.05 M KH₂PO₄, pH 6.5]=50:50

СКОРОСТЬ ПОТОКА: 0.1 мл/мин

ДАВЛЕНИЕ: 2.5 МПа **ТЕМПЕРАТУРА**: комнатная

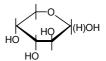
ДЕТЕКТОР: 360 нм

ОБРАЗЦЫ: 100 мкл нейтрализованной реакционной смеси:

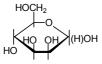
1- ДНФГ 2- ДНФГ-формальдегид 3- ДНФГ-ацетальдегид

Содержание ацетальдегида в образцах составило: **A:** Водка *"Русская"*, $40^{\rm O}$ (АО "Кедр", Иркутск) - 0.61 мг/л; **B:** Водка *"Пшеничная"*, $40^{\rm O}$ ((АО "Кедр", Иркутск) - 0.47 мг/л;

С: Спирт домашнего приготовления, 75^о - 25.7 мг/л;

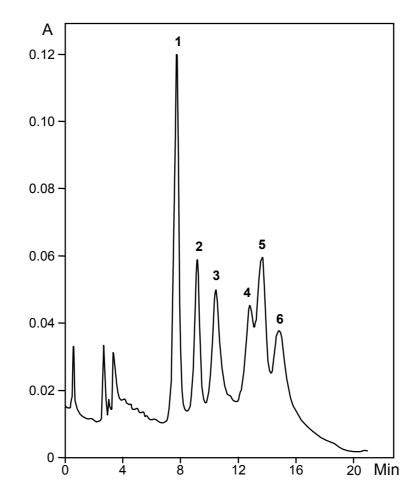

D: Спирт питьевой *YiYao Jiujing, GB 10343-89*, 95⁰ (Китай) - 8.8 мг/л.

CAXAPA


1. Рамноза

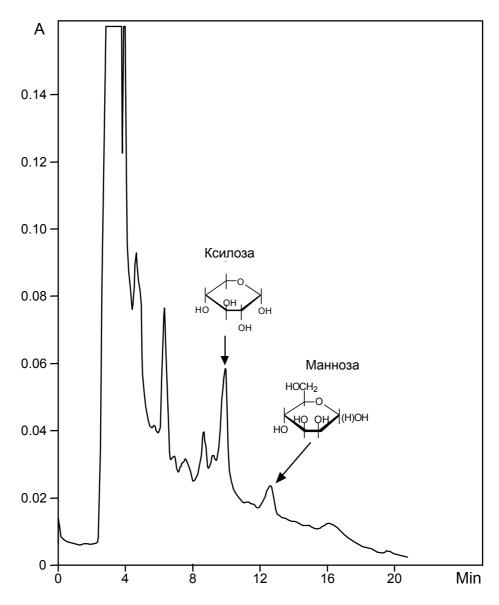
2. Ксилоза

3. Арабиноза


4. Манноза

5. Глюкоза

6. Галактоза

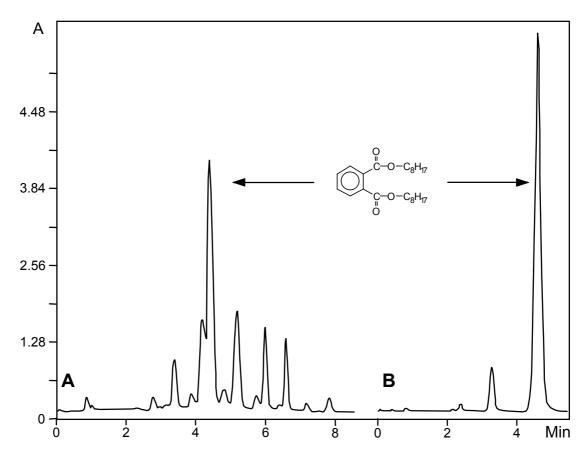

КОЛОНКА: \varnothing 2x80 мм; Separon 5-NH₂ **ЭЛЮЕНТ:** $[CH_3CN]:[H_2O]=75:25$

СКОРОСТЬ ПОТОКА: 0.1 мл/мин ДАВЛЕНИЕ: 1.5 МПа ТЕМПЕРАТУРА: 22°C

ДЕТЕКТОР: 190 нм

ОБРАЗЕЦ: 4 мкл водного раствора (по 40 мкг каждого соединения)

САХАРА В ГИДРОЛИЗАТЕ ДРЕВЕСИНЫ


КОЛОНКА: Ø2x80 мм; Separon 5-NH₂

ЭЛЮЕНТ: $[CH_3CN]:[H_2O]=75:25$ СКОРОСТЬ ПОТОКА: 0.1 мл/мин ДАВЛЕНИЕ: 1.5 МПа ТЕМПЕРАТУРА: 30°C

ДЕТЕКТОР: 190 нм

ОБРАЗЕЦ: 4 мкл нейтрализованного кислотного гидролизата древесины (*Larix sibirica*).

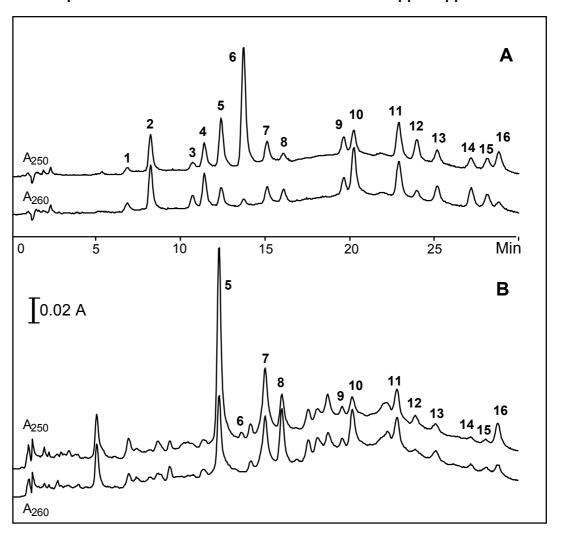
ДИОКТИЛФТАЛАТ В ПОЛИВИНИЛХЛОРИДЕ

КОЛОНКА: Ø2x64 мм; Nucleosil 5-С18

A- [CH₃CN]:[H₂O]=90:10 B- CH₃CN 0-100% В за 10 мин ЭЛЮЕНТЫ:

ГРАДИЕНТ:

СКОРОСТЬ ПОТОКА: 0.2 мл/мин давление: 2 МПа **ТЕМПЕРАТУРА**: 22^OC


210 нм ДЕТЕКТОР:

ОБРАЗЦЫ: 2 мкл этанольного экстракта поливинилхлоридных оболочек электрических кабелей.

Содержание ди-н-октилфталата составило:

A: 3.25%; **B:** 5.05%.

ПОЛИЦИКЛИЧЕСКИЕ АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ В СНЕГЕ

КОЛОНКА: Ø2x75 мм; Nucleosil 5-C18 PAH

ЭЛЮЕНТЫ: A- [CH₃OH]:[H₂O]=65:35; B- [CH₃CN]:[H₂O]=85:15 **ГРАДИЕНТ:** 100% A 3 мин; 0-100% B за 30 мин; 100% B 3 мин

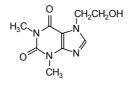
СКОРОСТЬ ПОТОКА: 0.12 мл/мин ДАВЛЕНИЕ: 1.5 МПа ТЕМПЕРАТУРА: 40°С

ДЕТЕКТОР: 250 и 260 нм

ОБРАЗЦЫ: А: 5 мкл стандартного метанольного раствора.

В: 2 мкл метанольного раствора высушенного гексанового экстракта снежной

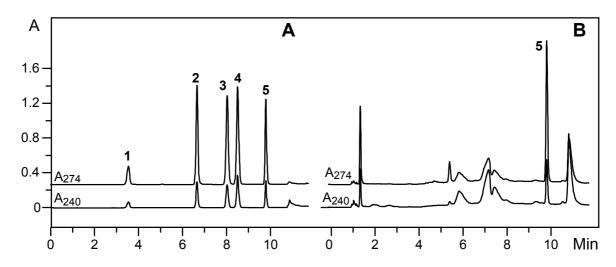
воды (побережье Южного Байкала, г. Слюдянка, март 1995 г.).


Nº	Вещество	A,	В,	Nº	Вещество	Α,	В,
		ΗΓ	мкг/л			НГ	мкг/л
1	Нафталин	21		9	Бензо[<i>a</i>]антрацен	7	0.1
2	Аценафтален	9		10	Хризен	7	0.2
3	Аценафтен	43		11	Ьензо[<i>b</i>]флюорантен	9	0.3
4	Флюорен	8		12	Бензо[<i>k</i>]флюорантен	5	0.2
5	Фенантрен	4	1.9	13	Бензо[а]пирен	5	0.2
6	Антрацен	2	0.1	14	Дибензо[<i>a,h</i>]антрацен	15	2.1
7	Флюорантен	10	1.1	15	Бензо[<i>g,h,i</i>]перилен	15	2.0
8	Пирен	4	1.0	16	Индено[1,2,3- <i>cd</i>]пирен	11	0.4

КСАНТИНЫ

1. Ксантин

2. Теобромин

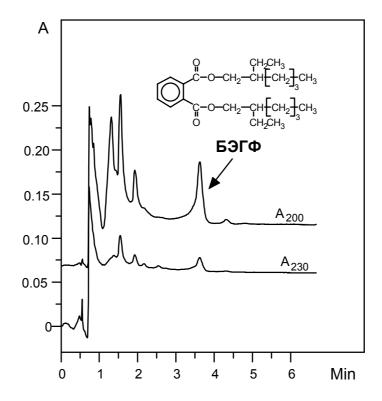

3. Теофиллин

4. β-Гидрокситеофиллин

5. Кофеин

КОЛОНКА: \varnothing 2x75 мм; Nucleosil 5-C18 **ЭЛЮЕНТЫ:** A- H₂O B- CH₃OH

ГРАДИЕНТ: 5-30% В за 9.3 мин; 80% В 4 мин


СКОРОСТЬ ПОТОКА: 0.15 мл/мин **ДАВЛЕНИЕ:** 3.5 МПа **ТЕМПЕРАТУРА:** 45°C

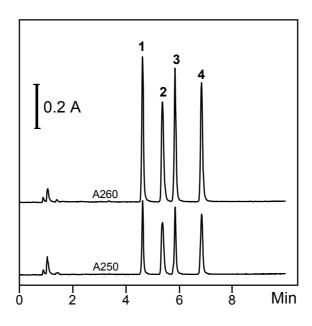
ДЕТЕКТОР: 240 и 274 нм

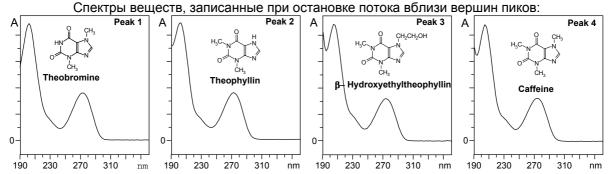
ОБРАЗЦЫ: А: 2 мкл водного раствора (около 0.2 мг/мл каждого соединения).

В: 2 мкл профильтрованного кофе.

БИС(2-ЭТИЛГЕКСИЛ)ФТАЛАТ В ВОДЕ ОЗЕРА БАЙКАЛ

КОЛОНКА: Ø2x75 мм; Nucleosil 5-C18


ЭЛЮЕНТ: $[CH_3OH]:[H_2O]=90:10$ СКОРОСТЬ ПОТОКА: 0.3 мл/мин ДАВЛЕНИЕ: 4 МПа ТЕМПЕРАТУРА: $35^{\circ}C$


ДЕТЕКТОР: 200 и 230 нм

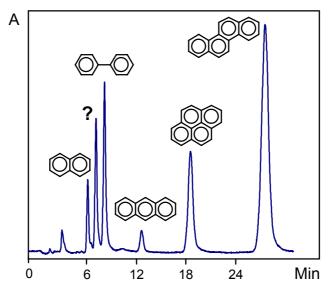
ОБРАЗЕЦ: 6000 мкл воды с добавкой 5% 2-пропанола. Инжектировали в колонку насосом А.

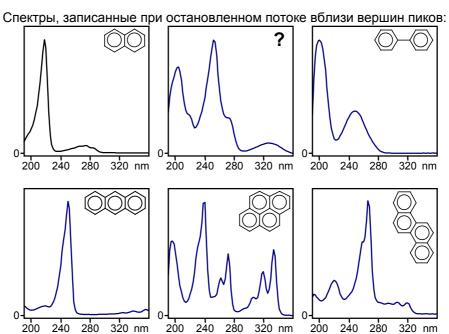
Концентрация БЭГФ - 1.7 мкг/л (Южный Байкал, глубина 900 м, август 1995 г.).

КСАНТИНЫ

КОЛОНКА:

 \varnothing 2x75 мм; Nucleosil 5-C18 A- H₂O B- [CH₃CH₂OH]:[H₂O]=30:70 ЭЛЮЕНТЫ:

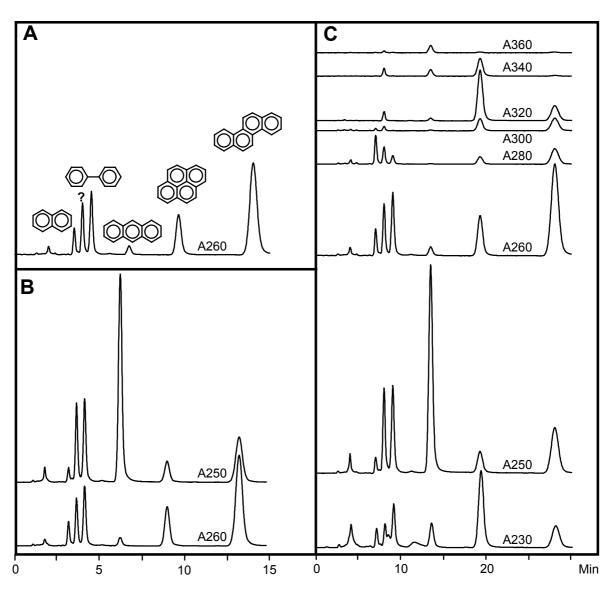

0-100% В за 10 мин ГРАДИЕНТ:


СКОРОСТЬ ПОТОКА: 0.2 мл/мин давление: 4.5 МПа **ТЕМПЕРАТУРА**: 45^OC

250 и 260 нм ДЕТЕКТОР:

2 мкл раствора веществ в [CH $_3$ CH $_2$ OH]:[0.1 M K $_2$ HPO $_4$, pH 6.5]=30:70 (по 1 мг/мл каждого). Предобразец: 10 мкл 0.1 M раствора К $_2$ HPO $_4$ (pH 6.5). ОБРАЗЕЦ:

ХРОМАТОГРАФИЯ И СПЕКТРОСКОПИЯ


КОЛОНКА: \emptyset 2x75 мм; Nucleosil 5-C18 ЭЛЮЕНТ: [CH₃OH]:[H₂O]=80:20 СКОРОСТЬ ПОТОКА: 0.1 мл/мин

СКОРОСТЬ ПОТОКА: 0.1 мл/мин **ДАВЛЕНИЕ**: 2.4 МПа **ТЕМПЕРАТУРА**: 22^OC

ДЕТЕКТОР: 260 нм

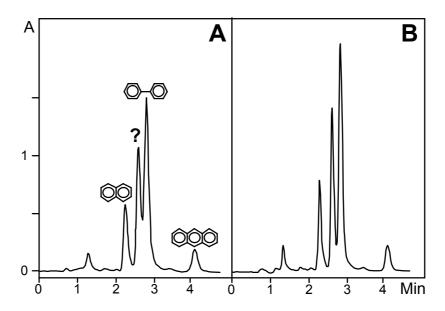
ОБРАЗЕЦ: 2 мкл раствора веществ в CH₃CN (по 0.5 мг/мл каждого)

МНОГОВОЛНОВОЕ ФОТОМЕТРИЧЕСКОЕ ДЕТЕКТИРОВАНИЕ

КОЛОНКА: \emptyset 2x75 мм; Nucleosil 5-C18 **ЭЛЮЕНТ:** [CH₃OH]:[H₂O]=80:20

СКОРОСТЬ A: 0.2 мл/мин **ДАВЛЕНИЕ**: **A**: 4.8 МПа **ТЕМПЕРАТУРА**: 22^OC

ПОТОКА: В: 0.2 мл/мин **В**: 4.8 МПа


ДЕТЕКТОР: A: 260 нм

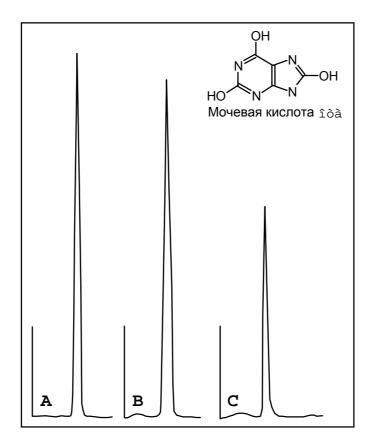
В: 250 и 260 нм

С: 230, 250, 260, 280, 300, 320, 340 и 360 нм

ОБРАЗЦЫ: 2 мкл раствора веществ в CH₃CN (по 0.5 мг/мл каждого)

ИСПОЛЬЗОВАНИЕ ПРЕДОБРАЗЦА ДЛЯ УЛУЧШЕНИЯ РАЗРЕШЕНИЕ ПИКОВ

КОЛОНКА: \emptyset 2x75 мм; Nucleosil 5-C18 **ЭЛЮЕНТ:** [CH₃OH]:[H₂O]=90:10


СКОРОСТЬ ПОТОКА: 0.2 мл/мин **ДАВЛЕНИЕ**: 3.5 МПа **ТЕМПЕРАТУРА**: 22^oC

ДЕТЕКТОР: 260 нм

ОБРАЗЦЫ: A: 2 мкл раствора веществ в CH₃CN (по 1 мкг каждого)

В: 5 мкл H₂O (предобразец) + 2 мкл раствора веществ в CH₃CN (по 1 мкг каждого)

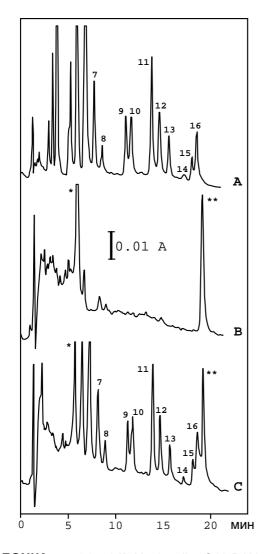
МОЧЕВАЯ КИСЛОТА В СЫВОРОТКЕ КРОВИ ЧЕЛОВЕКА

КОЛОНКА: \varnothing 2x62 мм; LiChrosorb RP-18 (5 мкм) **ЭЛЮЕНТ:** [CH₃OH]:[0.01 N CH₃COOH]=4:96

СКОРОСТЬ ПОТОКА: 0.1 мл/мин ДАВЛЕНИЕ: 2 МПа ТЕМПЕРАТУРА: 22°C

ДЕТЕКТОР: 290 нм

ОБРАЗЦЫ: 10 мкл раствора в водном ацетонитриле


А: раствор мочевой кислоты (0.600 ммоль/л)

В: сыворотка крови (концентрация мочевой кислоты 0.548 ммоль/л) **С:** сыворотка крови (концентрация мочевой кислоты 0.325 ммоль/л)

Подготовка образцов: 50-100 мкл сыворотки или плазмы крови смешивали в пробирке с равным объемом ацетонитрила, выдерживали 20 мин и центрифугировали (6 мин, 1500 g). 10 мкл супернатанта вводили в колонку. Продолжительность элюции 5 мин.

Показано, что площадь пика мочевой кислоты линейно связана с ее концентрацией до 1.2 ммоль/л. Показаны преимущества ВЭЖХ-анализа перед ферментативным и колориметрическим.

ОПРЕДЕЛЕНИЕ ПОЛИЦИКЛИЧЕСКИХ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ В БАЙКАЛЬСКОЙ БУТЫЛИРОВАННОЙ ПИТЬЕВОЙ ВОДЕ

Подготовка образца

1 л байкальской бутылированной питьевой воды (опытное производство Лимнологического института Сибирского отделения РАН, г. Иркутск, сентябрь 1994 года) экстрагировали трижды порциями гексана по 50 мл, экстракт упаривали досуха и остаток растворяли в 50 мкл метанола.

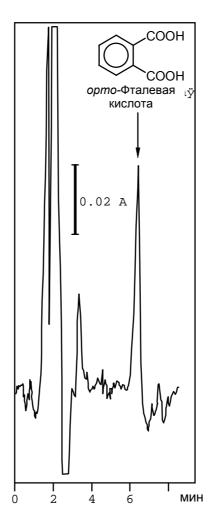
Образцы

- **А:** 5 мкл стандартного раствора полициклических ароматических углеводородов (ПАУ) в метаноле.
- **В:** 25 мкл метанольного раствора высушенного гексанового экстракта 1 л воды.
- **С**: 25 мкл метанольного раствора высушенного гексанового экстракта 1 л воды, в которую предварительно добавили 10 мкл стандартного раствора ПАУ.

КОЛОНКА: Ø2x72 iì; Nucleosil 5-C18 PAH

ЭЛЮЕНТЫ: A- [CH₃OH]:[H₂O]=65:35 B- [CH₃CN]:[H₂O]=85:15 **ГРАДИЕНТ:** 30% В 3 мин; 30-100% В за 13.3 мин; 100% В 5.3 мин

СКОРОСТЬ ПОТОКА: 0.15 мл/мин **ДАВЛЕНИЕ:** 3 МПа **ТЕМПЕРАТУРА:** 40°C


ДЕТЕКТОР: 250 нм

Nº	УГЛЕВОДОРОД	Кол-во, нг	Концентрация в воде, нг/л		Nº	УГЛЕВОДОРОД	Кол-во, нг	Концентрация в воде, нг/л	
		Α	В	С			Α	В	С
7	Флуорантен	21.5	<4	43.0	12	Бензо[<i>k</i>]флуорантен	10.7	<2	21.4
8	Пирен	10.7	<4	21.4	13	Бензо[а]пирен	10.7	<2	21.4
9	Бензо[а]антрацен	10.7	<2	21.4	14	Дибензо[<i>a,h</i>]антрацен	21.5	<20	43.0
10	Хризен	10.7	<2	21.4	15	Бензо[<i>g,h,i</i>]перилен	21.5	<4	43.0
11	Бензо[<i>b</i>]флуорантен	21.5	<2	43.0	16	Индено[1,2,3- <i>c,d</i>]пирен	21.5	<2	43.0
						Σ	161	<34	322

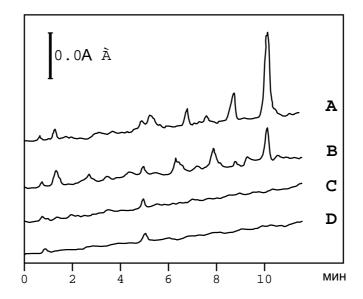
^{* -} дибутилфталат;

^{** -} диоктилфталат.

СУММА ЭФИРОВ ФТАЛЕВОЙ КИСЛОТЫ В ЖИРЕ БАЙКАЛЬСКОГО ТЮЛЕНЯ

КОЛОНКА: Ø2x64 мм; Nucleosil 5-C18

ЭЛЮЕНТ: $[CH_3CN]:[H_2O]:[0.01 \text{ M } (H-C_4H_9)_4NH_2PO_4, \text{ pH } 3.0]=30:70$


СКОРОСТЬ ПОТОКА: 0.1 мл/мин **ДАВ**ЛЕНИЕ: 2 МПа **ТЕМПЕРАТУРА**: 22^OC

ДЕТЕКТОР: 210 нм

ОБРАЗЕЦ: 2 мкл нейтрализованного гидролизата жира.

Подготовка образца: жир тюленя (самец, 15 лет, март 1993 г.) гидролизовали 1 час в 0.3 М КОН при $70^{\rm O}$ С. Гидролизат нейтрализовали фосфорной кислотой. Содержание \emph{o} -фталевой кислоты в жире составило 0.1 мг/г.

ПОГЛОЩАЮЩИЕ УФ-ИЗЛУЧЕНИЕ ВЕЩЕСТВА В ОЧИЩЕННОЙ ВОДЕ

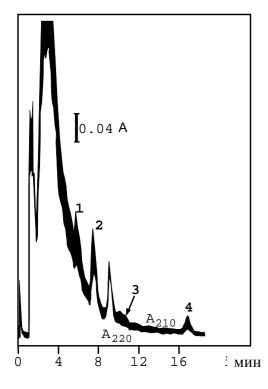
КОЛОНКА: Ø2x64 мм; Nucleosil 5-C18

ЭЛЮЕНТЫ: А- бидистиллированная вода В- CH₃CN

ГРАДИЕНТ: 0-100% В за 10 мин

СКОРОСТЬ ПОТОКА: 0.2 мл/мин **ДАВЛЕНИЕ**: 4.5 МПа **ТЕМПЕРАТУРА**: 22^OC

ДЕТЕКТОР: 210 нм


ОБРАЗЦЫ: А: 2 мл воды, очищенной по электроионообменной мембранной технологии.

В: 2 мл воды, деионизованной на аппарате фирмы ELGA (Великобритания).

С: 2 мл бидистиллированной воды.

D: 0 мл воды (контроль).

ХЛОРФЕНОЛЫ В СТОЧНЫХ ВОДАХ ПРОИЗВОДСТВА БЕЛЕНОЙ ЦЕЛЛЮЛОЗЫ

1- (2,4,6-Трихлорфенол+3,4,5-Трихлорфенол+4,5,6-Трихлоргваякол):

$$\begin{pmatrix} \mathsf{O} = \mathsf{C} - \mathsf{CH}_3 & \mathsf{O} = \mathsf{C} - \mathsf{CH}_3 & \mathsf{O} = \mathsf{C} - \mathsf{CH}_3 \\ \mathsf{O} & \mathsf{O} & \mathsf{O} & \mathsf{O} \\ \mathsf{CI} & \mathsf{CI} & \mathsf{O} & \mathsf{CH}_3 \\ \mathsf{CI} & \mathsf{CI} & \mathsf{CI} & \mathsf{CI} & \mathsf{O} \\ \mathsf{CI} & \mathsf{CI} & \mathsf{CI} & \mathsf{CI} & \mathsf{CI} \\ \mathsf{CI} & \mathsf{CI} & \mathsf{CI} & \mathsf{CI} & \mathsf{CI} \\ \end{pmatrix}$$

2- Тетрахлоркатехол (0.70 мкг/л):

3- Тетрахлоргваякол (<0.02 мкг/л):

4- Пентахлорфенол (0.25 мкг/л):

$$\begin{array}{c} \text{O=C-CH}_3 \\ \text{CI} \\ \text{CI} \\ \text{CI} \end{array}$$

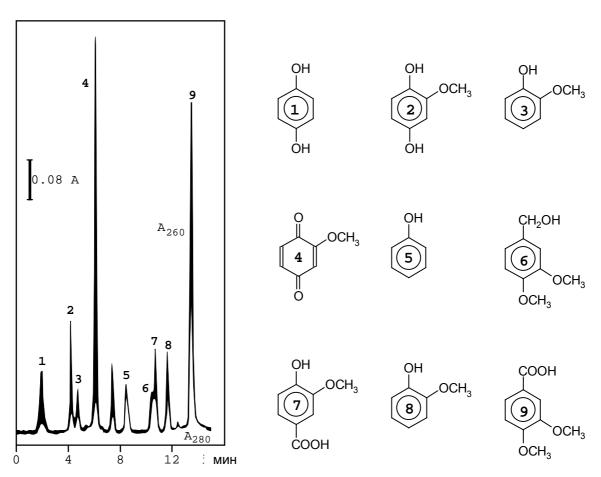
ХРОМАТОГРАФ: МИЛИХРОМ-1

КОЛОНКА: \varnothing 2x64 мм; Nucleosil 5-C18 **ЭЛЮЕНТ:** [CH₃OH]:[H₂O]=80:20

СКОРОСТЬ ПОТОКА: 0.1 мл/мин **ДАВЛЕНИЕ**: 3 МПа **ТЕМПЕРАТУРА**: 22°C

ДЕТЕКТОР: 210 и 220 нм

ОБРАЗЕЦ: 2 мкл метанольного раствора высушенного гексанового экстракта сточной воды


после ацетилирования (сточная вода, сбрасываемая в оз. Байкал Байкальским

целлюлозным комбинатом; г. Байкальск, август 1987 г.).

Подготовка образца: в 1 л сточной воды растворяли 5-7 г K_2CO_3 и затем добавляли 1 мл уксусного ангидрида.

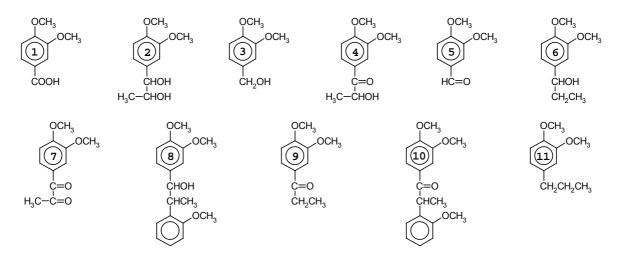
Через 8-10 мин (после прекращения выделения углекислого газа) реакционную смесь экстрагировали дважды гексаном порциями по 5 мл. Гексан упаривали досуха струей азота и остаток растворяли в метаноле.

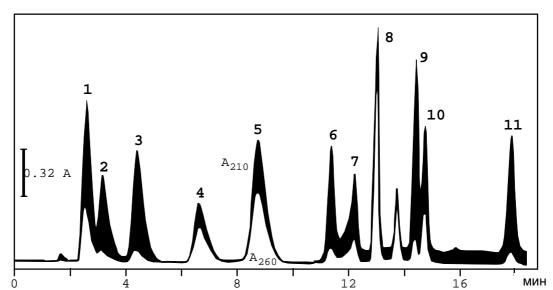
ФЕНОЛЫ - ПРОДУКТЫ ДЕСТРУКЦИИ ЛИГНИНА

ХРОМАТОГРАФ: МИЛИХРОМ-1

КОЛОНКА: Ø2x64 мм; Nucleosil 5-С18

A- [CH₃OH]:[H₂O]:[1.0 М KH₂PO₄, pH 3.0]=5:94:1 В- [CH₃OH]:[H₂O]:[1.0 М KH₂PO₄, pH 4.3]=50:49:1 100% Å 10 мин; 100% В 5 мин ЭЛЮЕНТЫ:


ГРАДИЕНТ:


СКОРОСТЬ ПОТОКА: 0.1 мл/мин **ТЕМПЕРАТУРА**: 22^OC **ДАВЛЕНИЕ**: 3.5 МПа

ДЕТЕКТОР: 260 и 280 нм

2 мкл метанольного раствора (по 0.2 мкг каждого соединения) ОБРАЗЕЦ:

ВЕРАТРОЛЫ: МОНОМЕРЫ ЛИГНИНА

ХРОМАТОГРАФ: МИЛИХРОМ 1А

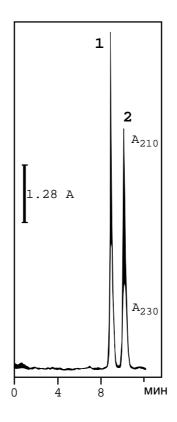
КОЛОНКА: Ø2x64 мм; Nucleosil 5-С18

A- [CH₃OH]:[H₂O]:[1.0 M KH₂PO₄, pH 4.3]=40:59:1 B- [CH₃OH]:[H₂O]:[1.0 M KH₂PO₄, pH 4.3]=70:29:1 0-100% В за 10 мин; 100% В 10 мин элюенты:

ГРАДИЕНТ:

СКОРОСТЬ ПОТОКА: 0.1 мл/мин **ТЕМПЕРАТУРА**: 22^OC **ДАВЛЕНИЕ**: 3.5 МПа

ДЕТЕКТОР: 210 и 260 нм


ОБРАЗЕЦ: 5 мкл раствора веществ в элюенте "А" (по 3-8 наномолей каждого)

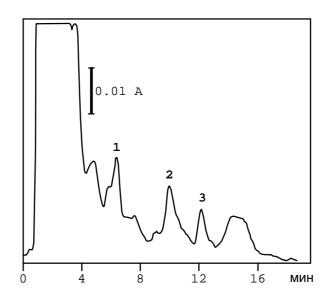
ПЕСТИЦИДЫ: ИЗОМЕРЫ ПЕРМЕТРИНА

$$\begin{array}{c} \text{HC}(\text{CH}_3)_2 \\ \text{CI}_2\text{C} = \text{HC} \\ \text{H} \\ \text{C} = \text{O} - \text{CH}_2 \\ \text{O} \\ \end{array}$$

1. цис-Перметрин

2. транс-Перметрин

ХРОМАТОГРАФ: МИЛИХРОМ-1


КОЛОНКА: \emptyset 2x64 мм; Silasorb 5-C18 **ЭЛЮЕНТ:** $[CH_3CN]:[H_2O]=78:22$

СКОРОСТЬ ПОТОКА: 0.1 мл/мин **ДАВЛЕНИЕ**: 2 МПа **ТЕМПЕРАТУРА**: 22^OC

ДЕТЕКТОР: 210 и 230 нм

ОБРАЗЕЦ: 4 мкл раствора веществ в ацетонитриле (по 8 мкг каждого)

ПЕСТИЦИДЫ: ДДТ ЕГО МЕТАБОЛИТЫ В ЖИРЕ БАЙКАЛЬСКОЙ НЕРПЫ

КОЛОНКА: Ø2x64 мм; Eurosphere 80-5-С18

ЭЛЮЕНТ: [CH₃OH]:[H₂O]=80:20

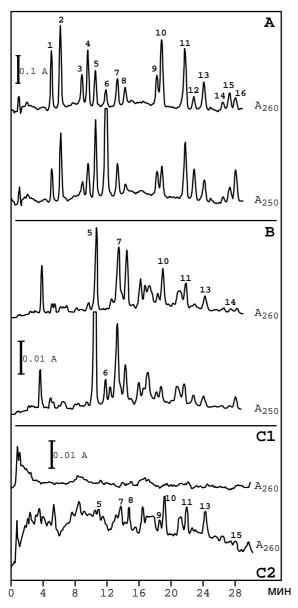
СКОРОСТЬ ПОТОКА: 0.2 мл/мин **ДАВЛЕНИЕ**: 3 МПа **ТЕМПЕРАТУРА**: 45^OC

ДЕТЕКТОР: 240 нм

ОБРАЗЕЦ: 4 мкл метанольного раствора экстракта из жира байкальской нерпы (самец, 1 год).

Предобразец - 5 мкл воды.

Содержание пестицидов в жире составило:


1. 4,4'-DDD (4.0 мкг/г);

2. 4,4'-DDT (4.5 мкг/г);

3. 4,4'-DDE (3.0 мкг/г).

Подготовка образца: 47 мг жира (50 мкл масла) нанесли на сухую колонку для твердофазной экстракции BAKERBOND spe Octadecyl (3 мл), затем нанесли 50 мкл тетрагидрофурана и, присоединив колонку к вакуумной линии, высушили ее досуха. Пестициды элюировали 2 мл ацетонитрила. Элюат упарили досуха струей азота при 50 с и остаток растворили в 50 мкл метанола.

ПОЛИЦИКЛИЧЕСКИЕ АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ В СНЕГЕ И В АТМОСФЕРНОМ АЭРОЗОЛЕ

КОЛОНКА: Ø2x75 мм; Nucleosil 5-C18 PAH. **ЭЛЮЕНТЫ:** A- [CH₃OH]:[H₂O]=65:35;

B- [CH₃CN]:[H₂O]=85:15.

ГРАДИЕНТ: 100% Å 3.3 мин; 0-100%В за 30 мин.

СКОРОСТЬ ПОТОКА: 0.15 мл/мин.

ДАВЛЕНИЕ: 3 МПа. **ТЕМПЕРАТУРА:** 40°C. **ДЕТЕКТОР:** 250 и 260 нм.

ОБРАЗЦЫ:

А: 3 мкл стандартного раствора в метаноле.

В: 2 мкл метанольного раствора гексанового экстракта из снежной воды (г. Слюдянка,

февраль 1994 г).

С: по 2 мкл метанольного раствора гексановой вытяжки из аэрозольных фильтров (2 мкм), через которые в феврале 1994 г. было про-

качено 27 куб.м воздуха

С1- г. Байкальск (Иркутская область);

С2- г. Слюдянка (Иркутская область).

Nº	Вещество	Α,	В,	C2,	Nº	Вещество	Α,	В,	C2,
		ΗΓ	мкг/л	нг/м ³			НГ	мкг/л	нг/м ³
1	Нафталин	64.5			9	Бензо[<i>a</i>]антрацен	6.4		6.2
2	Аценафтален	12.9			10	Хризен	6.4	1.0	9.9
3	Аценафтен	64.5			11	Ьензо[<i>b</i>]флюорантен	12.9	0.8	10.4
4	Флюорен	12.9			12	Бензо[<i>k</i>]флюорантен	6.4		
5	Фенантрен	6.4	2.7	2.7	13	Бензо[а]пирен	6.4	0.8	21.8
6	Антрацен	6.4	0.3		14	Дибензо[<i>a,h</i>]антрацен	12.9	1.0	
7	Флюорантен	12.9	5.9	20.1	15	Бензо[<i>g,h,i</i>]перилен	12.9	0.5	13.9
8	Пирен	6.4		14.8	16	Индено[1,2,3- <i>cd</i>]пирен	12.9		